Received June 20 1988 accepted September 9 1988

MASS SPECTRA OF PARTIALLY FLUORINATED β DIKETONATE COMPLEXES OF ZIRCONIUM

DANIEL T HAWORTH* Department of Chemistry Marquette University Milwaukee WI 53233 (USA)

JOAN C KUNZ Department of Chemistry Augsburg College Minneapolis MN 55454 (USA)

and MANORANJAN DAS Department of Chemistry Garyounis University Benghazi (Libya)

SUMMARY

The mass spectra of a variety of fluorinated tetrakis(β diketonate) complexes of zirconium are reported. The fragmentation patterns show stepwise loss of entire β diketonate ligands although the parent ions are not observed under a range of spectrometer conditions. Other mass spectra peaks demonstrate fluorine atom transfer to zirconium from the ligands.

INTRODUCTION

Although the mass spectra of a large number of metal β diketonate (acac) complexes have been reported [1] the mass spectra of the corresponding zirconium complexes have not been thoroughly examined. The paucity of such data is presumably due to the high mass ranges for the parent molecular ions of the type ZrL₄. The integrated ion current method [2] was used in the analysis of tetrakis(benzoyltrifluoroacetylacetonato)zirconium. This mass spectrum showed the parent ZrL₄⁺ molecular ion along with successive loss of the benzoyltrifluoro acetone ligands and ligand loss accompanied by fluorine transfer to zirconium. The mass spectrum of tetrakis(acetylacetonato)zirconium has been reported [3] but

^{*}Author to whom correspondence should be addressed

	a B
	ë
	<u>6</u>
	6
	ö
	2
	H
	Ē
	ĕ
	Ñ
	te
	Ца
	ē
	¥
	σ
	6
	0
	tra
	S
	8
	ŝ
	la:
	5
	the
	Ē
	s
	5
	÷
	ē
	E
	0
	ā
	ð
	Se
	ŧ
	Ĕ
	nte
—	- -
ш	Ē.
8	a
Ť	щ

R R M ⁺ (ZrL ₄ ⁺) ^b	zrL3 ⁺	ZrL ₂ F ⁺	zrL2 ⁺	ZrLF ₂ (COCHCOR) ⁺	ZrLF2 ⁺	ZrF ₃ (COCHC	OR) ⁺ ZrL ⁺	L+ (R(COCHCO)	+BCO ⁺	† T	÷
CH ₃ CF ₃ 702 708	549	415	396	365	281	231	246	153	84	43	15	- 69
<0 2%	100%	44%	2 2%	31%	10%	18%	trace	3 4%	5 9%	σ	σ	23%
C ₆ H ₅ CHF ₂ 878 884	681	503	484	453	325	293	287	197	147	105	17	51
	4 7%	2 8%			trace	trace	trace	17%	%99	67%	63%	
С ₆ Н ₅ СF ₃ 950 956	735	539	520	489	343	293	305	216	147	105	77	69
	100%	37%	18%	18%	12%	20%		14%	24%	65%	20%	37%
C ₆ H ₅ C ₂ F ₅ 1150 1156	885	639	620	539	393	293	355	265	147	105	11	119
	100%	19%	trace	18%	6 3%	4 9%	2 6%	1 4%	7 2%	55%	8 0%	trace
C ₆ H ₅ C ₃ F ₇ 1350 1356	1035	739	720	589	443	293	405	315	147	105	11	169
	89%	14%	trace	2 1%	2 9%	trace	trace	1 0%	8 7%	100%	8 1%	1 7%
сн ₃ сF ₃ 1006 1012	777	568	548	518	357	307	319	229	160	119	91	69
Ċ ₆ H₄	39%	16%	1 0%	6 6%	7 3%	10%		31%	46%	58%	29%	100%
C ₆ H ₄ F CF ₃ 1022 102	8789	575	556	525	361	311	323	233	165	123	95	69
	100%	36%	2 0%	17%	15%	23%		3 7%	12%	72%	10%	50%
^a trace less than 1 0% 90 _{Zr} 12 _C 1 _H 16 _O 15	not - F combi	observed inations c	l b _{mass}	es reported as range L ₃ F ⁺ and ZrL ₂ F(COt	based o CHCOR) ⁴	n Zr isotopes ions are eithe	Other ma	sses rep	orted corre are a trace	espond t dnot n	io neasur	ed .

1 į. 5. details are lacking The mass spectrum of tetrakis(hexafluoroacetylacetonato) zirconium was studied and peaks were observed corresponding to ZrL_4^+ ZrL_3^+ and fluorine addition to the trischelated zirconium species [4] We describe here the mass spectra of seven fluorinated β -diketonate zirconium complexes, plus the parent compound $Zr(acac)_4$

RESULTS AND DISCUSSION

The zirconium complexes used in this study are listed in Table I Although the structure of each compound has not been determined crystallographically molecular weight data [5] support a ZrL_4 formulation as shown in Figure 1 A recent redetermination of the structure of $Zr(acac)_4$ [6] confirms the earlier determination of Silverton and Hoard [7] of an eight coordinate polyhedron approximating a square antiprism structure with a small distortion towards dodecahedral geometry The major mass spectral fragmentation pattern is depicted in Figure 2 Relative intensities of the major fragment ions are given in Table I

TABLE II

Isotope	Relative abundance
90 _{Zr}	51 4%
⁹¹ Zr	11 2%
⁹² Zr	17 1%
⁹⁴ Zr	17 4%
96 _{Zr}	2 8%

Isotopic abundance of zirconium isotopes

The appearance of the mass spectra is complicated by the existence of multiple isotopes of zirconium listed in Table II. Thus each fragment containing zirconium appears in the spectrum as a group of several lines covering six mass units. The masses listed in Table I [except (b)] for the major fragments correspond to the 90 Zr containing peak, the most abundant zirconium isotope and consequently the most intense line of the cluster. As can be seen from Table I the parent ion, ZrL₄⁺ is not observed except for a trace peak (0.2%) in Zr(CF₃COCHCOCH₃)₄ although a variety of ionization methods were employed by

Fig 1 Structure of the zirconium β-diketonate complexes

Fig 2 Major fragmentation pathways in the mass spectra of the partially fluorinated β diketonate complexes of zirconium

several independent sources. That the parent ion unobserved is not unusual, considering that the coordination number of zirconium is eight, and a less sterically demanding situation can be achieved by ligand loss to ZrL_3^+ , which would have a coordination number of six. Moreover, the absence of the molecular ion ZrL_4^+ does seem to contradict the literature [2-4]. The mass spectrum of tetrakis(dibenzoylmethane)thorium, Th(dbm)₄, reports the molecular ion peak of low intensity (3%) [8]. We also do not observe the molecular ion for the parent compound, $Zr(acac)_4$, which agrees with the mass of spectrum of $Zr(acac)_4$ reported by the National Bureau of Standards [9].

The highest mass peak of appreciable intensity is ZrL3⁺, corresponding to the loss of one entire ligand. This is also the major peak reported in the mass spectrum of Th(dbm)_A [8] and in our spectrum of $Zr(acac)_A$ which also agrees with the NBS spectrum [9]. Successive loss of a ligand would lead to ZrL_2^+ and ZrL^+ , both of which were usually observed, but in much reduced relative intensities, indicating a particularly stable ZrL3+ ion. This latter ion is also the main ion found in our spectrum of Zr(acac)₄, giving masses of 387 (50.4%), 388(17.3%), 389(17.1%), 391(14.5%) and 392(0.7%) which agrees with the isotopic abundances for zirconium given in Table II. The other major peaks observed correspond to ions in which fluorine has been transferred to zirconium from ligands that have been cleaved. This process is repeated several times in the molecule fragmentation, producing ZrL₃F⁺ from ZrL₄⁺, ZrL₂F⁺ from ZrL₃⁺, and ZrLF₂⁺ from ZrL₂F⁺. Such species have been reported in the mass spectrum of Zr(C6H5COCHCOCF3)4 [2]. This transfer of atoms in metal β-diketonate complexes has also been observed in the mass spectrum of Al(acac), where the ion Al(OH)L⁺ is reported [10] and in other metal complexes of fluorinated β-diketonates [1]. Fluorine may also be transferred to zirconium followed by loss of the remaining even electron neutral fragment from R', as :CF2, C2F4 or C3F6. This leads to the observed peaks ZrL₂F(COCHCOR)⁺ from ZrL₃⁺, ZrLF₂(COCHCOR)⁺ from ZrL₂F⁺ and ZrF3(COCHCOR)⁺ from ZrLF2⁺. The transfer of fluorine from ligand to zirconium is expected in view of hard-soft acid-base theory, which classifies Zr4+ as a hard acid and F as a hard base [11]. Other transition metals, such as copper [1], do not show fluorine migration in their fluorinated β-diketonate complexes. The remaining peaks observed in the spectra are due to ionization and fragmentation of the ligand itself, which has been previously reported [1,11-13].

EXPERIMENTAL

The β -diketonates and their zirconium complexes were prepared as previously described [5]. Zr(acac)₄ was obtained from ROC/RIC Corporation, Sun Valley, CA,

USA. The EI MS of $Zr(acac)_4$ was obtained on a Finnegan gas chromotograph/EI-CI. The EI MS of the fluorinated complexes were obtained on a Kratos MS-80RF at 30 eV and 10 eV, at an inlet temperature of 150°C. Fast atom bombardment (FAB) MS were obtained on a Kratos-MS-50 triple analyzer using a matrix of 3nitrobenzylalcohol.

ACKNOWLEDGEMENTS

The authors would like to thank: John Brown and David Snyder of the University of Wisconsin-Madison for the EI MS; William Schulze of Miller Brewing Company for the EI MS of $Zr(acac)_4$; and Roger Hayes and Ronald Cerny for the FAB spectra at the Midwest Center for Mass Spectrometry at the University of Nebraska-Lincoln, a National Science Foundation Regional Instrumentation Facility (Grant No. CHE-8620177).

REFERENCES

- 1 J. C. Kunz, M. Das and D. T. Haworth, Inorg. Chem., <u>25</u>, (1986) 3544 and references cited therein.
- 2 M. G. Allcock, R. Belcher, J. R. Majer and R. Perry, Anal. Chem., <u>42</u>, (1970) 776.
- 3 B. V. Zhyk, G. A. Domrachev and N. M. Semenov, Fiz. Mat. Metody. Koord. Khim., Tezisy Dokl., Vses Soveshch., 5th, 160 (1974).
- 4 S. C. Chattoraj, C. T. Lynch and K. S. Mazdiyasni, Inorg. Chem., <u>7</u>, (1968) 2501.
- 5 M. Das, J. W. Beery and D. T. Haworth, Synth. React. Inorg. Met.-Org. Chem., <u>12</u>, (1982) 671.
- 6 W. Clegg, Acta Cryst., C43, (1987) 789.
- 7 J. L. Hoard and J. V. Silverton, Inorg. Chem., 2, (1963) 235.
- 8 M. J. Lacey, C. G. McDonald and J. S. Shannon, Org. Mass Spectrom., <u>1</u>, (1968) 115.
- 9 '1978 Indices to EPA/NIH Mass Spectral Data Base' U.S. Dept. of Commerce, NSRDS-NBS-63, Dec. 1978.
- 10 C. G. McDonald and J. S. Shannon, Aust. J. Chem., 19, (1966) 1545.
- 11 M. Das, Inorg. Chim. Acta, 77, (1983) L65 and references therein.
- 12 M. Das, J. Inorg. Nucl. Chem., 43, (1981) 3412.
- 13 M. Das and S. E. Livingston, Aust. J. Chem. 28, (1975) 1513.